国产 在线 一区二区三区_亚洲国产精品欧美日韩一区二区_在线观看不卡av电影_国产日韩久久免费福利网站

鋼材斷裂知識講解
  發(fā)布時(shí)間:2021年02月17日 點(diǎn)擊數(shù):

  用于各行業(yè)的鋼材品種達(dá)數(shù)千種之多。每種鋼材都因不同的性能、化學(xué)成分或合金種類和含量而具有不同的商品名稱。雖然斷裂韌性值大大方便了每種鋼的選擇,然而這些參數(shù)很難適用于所有鋼材。

  主要原因有:第一,因?yàn)樵阡摰囊睙挄r(shí)需加入一定數(shù)量的某種或多種合金元素,成材后再經(jīng)簡單熱處理便可獲得不同的顯微組織,從而改變了鋼的原有性能;第二,因?yàn)闊掍摵蜐沧⑦^程中產(chǎn)生的缺陷,特別是集中缺陷(如氣孔、夾雜等)在軋制時(shí)極其敏感,并且在同一化學(xué)成分鋼的不同爐次之間,甚至在同一鋼坯的不同部位發(fā)生不同的改變,從而影響鋼材的質(zhì)量。

  由于鋼材韌性主要取決于顯微結(jié)構(gòu)和缺陷的分散(嚴(yán)防集中缺陷)度,而不是化學(xué)成分。所以,經(jīng)熱處理后韌性會發(fā)生很大變化。要深入探究鋼材性能及其斷裂原因,還需掌握物理冶金學(xué)和顯微組織與鋼材韌性的關(guān)系。

  1. 鐵素體-珠光體鋼斷裂

  鐵素體-珠光體鋼占鋼總產(chǎn)量的絕大多數(shù)。它們通常是含碳量在0.05%~0.20%之間的鐵-碳和為提高屈服強(qiáng)度及韌性而加入的其它少量合金元素的合金。

  鐵素體-珠光體的顯微組織由BBC鐵(鐵素體)、0.01%C、可溶合金和Fe3C組成。在碳含量很低的碳鋼中,滲碳體顆粒(碳化物)停留在鐵素體晶粒邊界和晶粒之中。但當(dāng)碳含量高于0.02%時(shí),絕大多數(shù)的Fe3C形成具有某些鐵素體的片狀結(jié)構(gòu),而稱為珠光體,同時(shí)趨向于作為“晶粒”和球結(jié)(晶界析出物)分散在鐵素體基體中。含碳量在0.10%~0.20%的低碳鋼顯微組織中,珠光體含量占10%~25%。

  盡管珠光體顆粒很堅(jiān)硬,但卻能非常廣泛地分散在鐵素體基體上,并且圍繞鐵素體輕松地變形。通常,鐵素體的晶粒尺寸會隨著珠光體含量的增加而減小。因?yàn)橹楣怏w球結(jié)的形成和轉(zhuǎn)化會妨礙鐵素體晶粒長大。因此,珠光體會通過升高d-1/2(d為晶粒平均直徑)而間接升高拉伸屈服應(yīng)力δy。

  從斷裂分析的觀點(diǎn)看,在低碳鋼中有兩種含碳量范圍的鋼,其性能令人關(guān)注。一是,含碳量在0.03%以下,碳以珠光體球結(jié)的形式存在,對鋼的韌性影響較小;二是,含碳量較高時(shí),以球光體形式直接影響韌性和夏比曲線。

  2. 處理工藝的影響

  實(shí)踐得知,水淬火鋼的沖擊性能優(yōu)于退火或正火鋼的沖擊性能,原因在于快冷阻止了滲碳體在晶界形成,并促使鐵素體晶粒變細(xì)。

  許多鋼材是在熱軋狀態(tài)下銷售,軋制條件對沖擊性能有很大影響。較低的終軋溫度會降低沖擊轉(zhuǎn)變溫度,增大冷卻速度和促使鐵素體晶粒變細(xì),從而提高鋼材韌性。厚板因冷卻速度比薄板慢,鐵素體晶粒比薄板粗大。所以,在同樣的熱處理?xiàng)l件下厚板比薄板更脆性。因此,熱軋后常用正火處理以改善鋼板性能。

  熱軋也可生產(chǎn)各向異性鋼和各種混合組織、珠光體帶、夾雜晶界與軋制方向一致的定向韌性鋼。珠光體帶和拉長后的夾雜粗大分散成鱗片狀,對夏比轉(zhuǎn)變溫度范圍低溫處的缺口韌性有很大影響。

  3. 鐵素體-可溶合金元素的影響

  絕大多數(shù)合金元素加入低碳鋼,是為了生產(chǎn)在某些環(huán)境溫度下的固溶體硬化鋼,提高晶格摩擦應(yīng)力δi。但目前還不能僅用公式預(yù)測較低屈服應(yīng)力,除非已知晶粒尺寸。雖然屈服應(yīng)力的決定因素是正火溫度和冷卻速度,然而這種研究方法仍很重要,因?yàn)榭梢酝ㄟ^提高δi預(yù)測單個合金元素可降低韌性的范圍。

  鐵素體鋼的無塑性轉(zhuǎn)變(NDT)溫度和夏比轉(zhuǎn)變溫度的回歸分析至今尚無報(bào)導(dǎo),然而這些也僅限于加入單個合金元素對韌性影響的定性討論。以下就幾種合金元素對鋼性能的影響作簡要介紹。

  1)錳。絕大多數(shù)的錳含量約為0.5%。作為脫氧劑或固硫劑加入可防止鋼的熱裂。在低碳鋼中還有以下作用。

  ◆ 含碳量0.05%鋼,空冷或爐冷后有降低晶粒邊界滲碳體薄膜形成的趨勢。

  ◆ 可稍減小鐵素體晶粒尺寸。

  ◆ 可產(chǎn)生大量而細(xì)小的珠光體顆粒。

  前兩種作用說明NDT溫度隨著錳量的增加而降低,后兩種作用會引起夏比曲線峰值更尖。

  鋼含碳量較高時(shí),錳能顯著降低約50%轉(zhuǎn)變溫度。其原因可能是因珠光體量多,而不是滲碳體在邊界的分布。必須注意的是,如果鋼的含碳量高于0.15%,高錳含量對正火鋼的沖擊性能影響起到了決定性作用。因?yàn)殇摰母叽阃感砸饖W氏體轉(zhuǎn)變成脆性的上貝氏體,而不是鐵素體或珠光體。

  2)鎳。加入鋼中的作用似錳,可改善鐵-碳合金韌性。其作用大小取決于含碳量和熱處理。在含碳量(約0.02%)很低的鋼中,加入量達(dá)到2%就能防止熱軋態(tài)和正火鋼晶界滲碳體的形成,同時(shí)實(shí)質(zhì)降低開始轉(zhuǎn)變溫度TS,升高夏比沖擊曲線峰值。

  進(jìn)一步增加鎳含量,改善沖擊韌性效果則降低。如果這時(shí)含碳量低至正火后無碳化物出現(xiàn)時(shí),鎳對轉(zhuǎn)變溫度的影響將變得很有限。在含碳約0.10%的正火鋼中加入鎳,最大的好處是細(xì)化晶粒和降低游離氮含量,但其機(jī)理目前尚不清楚??赡苁怯捎阪囎鳛閵W氏體的穩(wěn)定劑從而降低了奧氏體分解的溫度。

  3)磷。在純凈的鐵-磷合金中,由于鐵素體晶界會發(fā)生磷偏析降低了抗拉強(qiáng)度Rm而使晶粒之間脆化。此外,由于磷還是鐵素體的穩(wěn)定劑。所以,加入鋼中將大大增加δi值和鐵素體晶粒尺寸。這些作用的綜合將使磷成為極其有害的脆化劑,發(fā)生穿晶斷裂。

  4)硅。鋼中加硅是為了脫氧,同時(shí)有益于提高沖擊性能。如果鋼中同時(shí)存在錳和鋁,大部分硅在鐵素體中溶解,同時(shí)通過固溶化硬化作用提高δi。這種作用與加入硅提高沖擊性能綜合的結(jié)果是,在穩(wěn)定晶粒尺寸的鐵-碳合金中按重量百分比加入硅,使50%轉(zhuǎn)變溫度升高約44℃。此外,硅與磷相似,是鐵素鐵的穩(wěn)定劑,能促進(jìn)鐵素體晶粒長大。按重量百分?jǐn)?shù)計(jì),硅加入正火鋼中將提高平均能量轉(zhuǎn)換溫度約60℃。

  5)鋁。以合金和脫氧劑的作用加入鋼中有以下兩方面的原因:第一,與溶體中的氮生成AlN,去除游離氮;第二,AlN的形成細(xì)化了鐵素體晶粒。這兩種作用的結(jié)果是,每增加0.1%的鋁,將使轉(zhuǎn)變溫度降低約40℃。然而,當(dāng)鋁的加入量超過了需要,“固化”游離氮的作用將變?nèi)酢?/p>

  6)氧。鋼中的氧會在晶界產(chǎn)生偏析導(dǎo)致鐵合金晶間斷裂。鋼中氧含量高至0.01%,斷裂就會沿著脆化晶粒的晶界產(chǎn)生的連續(xù)通道發(fā)生。即使鋼中含氧量很低,也會使裂紋在晶界集中成核,然后穿晶擴(kuò)散。解決氧脆化問題的方法是,可加入脫氧劑碳、錳、硅、鋁和鋯,使其和氧結(jié)合生成氧化物顆粒,而將氧從晶界去除。氧化物顆粒也是延遲鐵素體生長和提高d-/2的有利物質(zhì)。

  4. 含碳量在0.3%~0.8%的影響

  亞共析鋼的含碳量在0.3%~0.8%,先共析鐵素體是連續(xù)相并首先在奧氏體晶界形成。珠光體在奧氏體晶粒內(nèi)形成,同時(shí)占顯微組織的35%~100%。此外,還有多種聚集組織在每一個奧氏體晶粒內(nèi)形成,使珠光體成為多晶體。

  由于珠光體強(qiáng)度比先共析鐵素體高,所以限制了鐵素體的流動,從而使鋼的屈服強(qiáng)度和應(yīng)變硬化率隨著珠光體含碳量的增加而增加。限制作用隨硬化塊數(shù)量增加,珠光體對先共析晶粒尺寸的細(xì)化而增強(qiáng)。

  鋼中有大量珠光體時(shí),形變過程中會在低溫和/或高應(yīng)變率時(shí)形成微型解理裂紋。雖然也有某些內(nèi)部聚集組織斷面,但斷裂通道最初還是沿著解理面穿行。所以,在鐵素體片之間、相鄰聚集組織中的鐵素體晶粒內(nèi)有某些擇優(yōu)取向。 

  5. 貝氏體鋼斷裂

  在含碳量為0.10%的低碳鋼中加入0.05%鉬和硼可優(yōu)化通常發(fā)生在700~850℃奧氏體-鐵素體轉(zhuǎn)變,且不影響其后在450℃和675℃時(shí)奧氏體-貝氏體轉(zhuǎn)變的動力學(xué)條件。

  在大約525~675℃之間形成的貝氏體,通常稱為“上貝氏體”;在450~525℃之間形成的稱為“下貝氏體”。兩種組織均由針狀鐵素體和分散的碳化物組成。當(dāng)轉(zhuǎn)變溫度從675℃降至450℃時(shí),未回火貝氏體的抗拉強(qiáng)度會從585MPa升高至1170MPa。

  因?yàn)檗D(zhuǎn)變溫度由合金元素含量決定,并間接影響屈服和抗拉強(qiáng)度。這些鋼獲得的高強(qiáng)度是以下兩種作用的結(jié)果:

  1)當(dāng)轉(zhuǎn)變溫度降低時(shí),貝氏體鐵素體片尺寸不斷細(xì)化。

  2)在下貝氏體內(nèi)精細(xì)的碳化物不斷分散。這些鋼的斷口特征在很大程度上取決于抗拉強(qiáng)度和轉(zhuǎn)變溫度。

  有兩種作用要注意:第一,一定的抗拉強(qiáng)度級別,回火下貝氏體的夏比沖擊性能遠(yuǎn)遠(yuǎn)優(yōu)于未回火的上貝氏體。原因是在上貝氏體中,球光體內(nèi)的解理小平面切割了若干貝氏體晶粒,決定斷裂的主要尺寸是奧氏體晶粒尺寸。

  在下貝氏體中,針狀鐵素體內(nèi)的解理面未排成一直線,因此決定準(zhǔn)解理斷裂面是否斷裂的主要特征是針狀鐵素體晶粒尺寸。因?yàn)檫@里的針狀鐵素體晶粒尺寸僅為上貝氏體中的奧氏體晶粒尺寸的1/2。所以,在同一強(qiáng)度級別,下貝氏體轉(zhuǎn)變溫度比上貝氏體低許多。

  除了上面的原因之外是碳化物分布。在上貝氏體中碳化物位于晶界沿線,并通過降低抗拉強(qiáng)度Rm增加脆性。在回火的下貝氏體中,碳化物非常均勻地分布的鐵素體中,同時(shí)通過限制解理裂紋以提高抗拉強(qiáng)度并促進(jìn)球化珠光體細(xì)化。

  第二,要注意的是未回火合金中轉(zhuǎn)變溫度與抗拉強(qiáng)度的變化。在上貝氏體中,轉(zhuǎn)變溫度的降低會使針狀鐵素體尺寸細(xì)化同時(shí)升高延伸強(qiáng)度Rp0.2。

  在下貝氏體中,為獲得830MPa或更高的抗拉強(qiáng)度,也可通過降低轉(zhuǎn)變溫度提高強(qiáng)度的方法實(shí)現(xiàn)。然而,因?yàn)樯县愂象w的斷口應(yīng)力取決于奧氏體晶粒尺寸,而此時(shí)的碳化物顆粒尺寸已經(jīng)很大,因此通過回火提高抗拉強(qiáng)度的作用很小。 

  6. 馬氏體鋼斷裂 

  碳或其它元素加入鋼中可延遲奧氏體轉(zhuǎn)變成鐵素體和珠光體或貝氏體,同時(shí)奧氏體化后如果冷卻速度足夠快,通過剪切工藝奧氏體會變成馬氏體而不需進(jìn)行原子擴(kuò)散。

  理想的馬氏體斷裂應(yīng)具有以下特征:

  ◆ 因?yàn)檗D(zhuǎn)變溫度很低(200℃或更低),四面體鐵素體或針狀馬氏體非常細(xì)。

  ◆ 因?yàn)橥ㄟ^剪切發(fā)生轉(zhuǎn)變,奧氏體中的碳原子來不及擴(kuò)散出晶體,使鐵素體中的碳原子飽和從而使馬氏體晶粒拉長導(dǎo)致晶格膨脹。

  ◆ 發(fā)生馬氏體轉(zhuǎn)變要超過一定的溫度范圍,因?yàn)槌跏忌傻鸟R氏體片給以后的奧氏體轉(zhuǎn)變成馬氏體增加阻力。所以,轉(zhuǎn)變后的結(jié)構(gòu)是馬氏體和殘余奧氏體的混合結(jié)構(gòu)。

  為了保證鋼的性能穩(wěn)定,必須進(jìn)行回火。高碳(0.3%以上)馬氏體,在以下范圍內(nèi)回火約1h,經(jīng)歷以下三個階段。

  1)溫度達(dá)到約100℃時(shí),馬氏體某些過飽和碳沉淀并形成非常細(xì)小的ε-碳化物顆粒,分散于馬氏體中而降低碳含量。

  2)溫度在100~300℃之間,任何殘余奧氏體都可能轉(zhuǎn)變成貝氏體和ε-碳化物。

  3)在第3階段回火中,大約200℃起取決于碳含量和合金成分。當(dāng)回火溫度升至共析溫度,碳化物沉淀變粗同時(shí)Rp0.2降低。 

  7. 中強(qiáng)度鋼斷裂

  中強(qiáng)度鋼(620MPa<Rp0.2<1240MPa),除了消除應(yīng)力提高沖擊韌性之外,回火還有以下兩種作用:第一,轉(zhuǎn)變殘余奧氏體。殘留奧氏體將在低溫約30℃轉(zhuǎn)變成韌性針狀下貝氏體。在較高的溫度如600℃,殘余奧氏體會轉(zhuǎn)變成脆性的珠光體。因此,鋼在550~600℃進(jìn)行第一次回火,在300℃進(jìn)行第二次回火,以避免形成脆性珠光體,稱這種回火制度為“二次回火”。

  第二,增加彌散性碳化物含量(抗拉強(qiáng)度Rm增加),降低屈服強(qiáng)度。如果升高回火溫度,兩者都將會引起沖擊,轉(zhuǎn)變回火范圍降低。因?yàn)轱@微組織變精細(xì),在同樣強(qiáng)度級別,將提高抗拉塑性。

  回火脆性是可逆的。如果回火溫度高到超過了臨界范圍而降低了轉(zhuǎn)變溫度,可將材料再加熱后在臨界范圍處理,回火溫度才可以再升高。如果出現(xiàn)微量元素,表明脆性將得到改善。最重要的微量元素是銻、磷、錫、砷,加上錳和硅都有去脆作用。如果其它合金元素存在,鉬也能降低回火脆性,同時(shí)鎳和鉻也有一定的作用。 

  8. 高強(qiáng)度鋼斷裂

  高強(qiáng)鋼(Rp0.2>1240MPa)可通過以下方法進(jìn)行生產(chǎn):淬火和回火;淬火和回火前奧氏體變形;退火和時(shí)效生產(chǎn)沉淀硬化鋼。此外,還可通過應(yīng)變和再回火或回火期應(yīng)變,都可進(jìn)一步提高鋼的強(qiáng)度。 

  9. 不銹鋼斷裂

  不銹鋼主要由鐵-鉻、鐵-鉻-鎳合金和其它改善力學(xué)性能與抗蝕能力的元素組成。不銹鋼防蝕是因?yàn)樵诮饘俦砻嫔闪丝煞乐惯M(jìn)一步氧化的鉻氧化物—不可滲透層。

  因此,不銹鋼在氧化氣氛中能防止腐蝕并使鉻氧化物層得到強(qiáng)化。但在還原氣氛中,鉻氧化層受到損害。抗蝕性隨著鉻、鎳含量增加而增加。鎳可全面提升鐵的鈍化性。

  增加碳是為了改善力學(xué)性能和保證奧氏體不銹鋼性能的穩(wěn)定。一般說來,不銹鋼利用顯微組織進(jìn)行分類。

  ◆ 馬氏體不銹鋼。屬于鐵-鉻合金,可進(jìn)行奧氏體化和后序熱處理生成馬氏體。通常含鉻12%,含碳0.15%。

  ◆ 鐵素體不銹鋼。含鉻約14%~18%,碳0.12%。因?yàn)殂t是鐵素體的穩(wěn)定劑,奧氏體相被超過13%的鉻徹底抑制,因而是完全的鐵素體相。

  ◆ 奧氏體不銹鋼。鎳是奧氏體的強(qiáng)穩(wěn)定劑,因此,在室溫、低于室溫或高溫狀態(tài)下,鎳含量為8%,鉻含量為18%(300型)能使奧氏體相非常穩(wěn)定。奧氏體不銹鋼類似于鐵素體型,不能通過馬氏體轉(zhuǎn)變而硬化。

  鐵素體和馬氏體不銹鋼特征,如晶粒尺寸等與同級別的其它鐵素體鋼和馬氏體鋼相似。

  奧氏體不銹系FCC結(jié)構(gòu),在冷凍溫度下都不可能解理斷裂。大型件冷軋80%后,310型不銹鋼有極高的屈服強(qiáng)度和缺口敏感性,甚至在溫度低至-253℃還具有1.0的缺口敏感性比。因此,可用于導(dǎo)彈系統(tǒng)的液氫貯存箱。相似的301型不銹鋼可用于溫度低至183℃的液氧貯存箱。但在這些溫度以下是不穩(wěn)定的,如發(fā)生任何塑性變形,不穩(wěn)定的奧氏體都會變成脆性的非回火馬氏體。絕大多數(shù)奧氏體鋼用于防腐環(huán)境,被加熱至500~900℃溫度范圍,鉻碳化物會沉淀在奧氏體晶界,結(jié)果使晶界附近范圍內(nèi)的鉻層被完全耗盡。該部位非常容易受到腐蝕和局部腐蝕,如果存在應(yīng)力,還可導(dǎo)致晶脆性斷裂。

  為了減輕上述危害,可加入少量性能強(qiáng)于鉻碳化物的元素,例如鈦或鈮,與碳形成合金碳化物,防止鉻被耗盡和隨之而致的應(yīng)力腐蝕裂紋。常稱這種處理為“穩(wěn)定化處理”。

  奧氏體不銹鋼也常用于高溫,如壓力容器,防止和滿足抗腐蝕和抗蠕變。某些鋼種因?yàn)樵诤负鬅崽幚砗透邷丨h(huán)境下對熱影響區(qū)及其附近的裂紋十分敏感。所以,當(dāng)焊接再加熱時(shí),受高溫作用,鈮或鈦碳化物會在晶粒內(nèi)和晶界沉淀,導(dǎo)致裂紋產(chǎn)生而影響使用壽命,這必須給予高度重視。

  來源:熱加工論壇